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Mo'va'on	

•  Increased	Amount	of	Data	in	Power	Systems	
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Mo'va'on	

•  Data	
–  Nonpervasive	
–  Heterogeneous	
–  Highly	variable	
–  Different	
resolu/on	
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•  Predic/ve	System	
Opera/ons	

Mo'va'on	

•  Power	Systems	
Situa/onal	Awareness	
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Distribu'on	 Transmission	

State-of-the-Art	
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Objec'ves	

•  Integrate	the	look-ahead	state	es/ma/on	method	
with	short-term	resource	and	load	forecas/ng	

•  Develop	a	robust	grid	es/ma/on	and	forecas/ng	
pla\orm	

•  Develop	a	novel	comprehensive	deep	learning	
method	for	mul/modal	knowledge	discovery	

•  Reliably	forecast	grid	condi/ons	in	5-minute	
resolu/on	with	30-minute	look-ahead	window	
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Predic've	Analy'cs	for	Grid	Es'ma'on	(PAGE)	
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Overview of Sky Imager Forecast 

Sky Imager 

source: Google 
Earth 

source: Bryan Urquhart 

Forecast Procedures: 
1.  Identify clouds; 
2.  Position clouds; 
3.  Track cloud movement; 
4.  Predict GHI; 
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Cloud	transmiOance	and	
reflectance	of	irradiance	

AOD,	θ,	g,	ω,	PWV,	P,	ozone,
…	

Clear-sky	transmiOance	and	
reflectance	

REST2		

Surface	albedo	All-sky	broadband	
irradiances	

Xie et al., Solar Energy (2016) 

Fast	All-sky	Radia'on	Model	for	Solar	applica'ons	(FARMS)	



min GHI Forecast for a Cloudy Day  

rMAE_SI = 19.2% 
rMAE_SI_RTM = 8.7% 
rRMSE_SI = 28.9% 
rRMSE_SI_RTM = 12.2%  



Error Metrics 



Model-Based	Load	Forecas'ng	
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Data-Driven	Load	Forecas'ng	
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•  Machine	Learning-Based	Load	Forecas/ng	
–  Short-term	
–  High-resolu/on	
–  Using	support	vector	regression	
–  Hybrid	parameter	op/miza/on		

Load	forecas/ng	demonstra/on	



Grid	Forecas'ng	
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•  Input	
–  Individual	power	injec/ons	and	withdraws	
–  Individual	forecasts	given	as	mul/dimensional	polytope	

•  Model	
–  Linear	approxima/on	between	state	variables	(voltage	
angle	and	magnitude)	and	withdrew/injected	powers	to	
compute	a	polytope	that	a	forecast	for	grid-state	

– Mul/-dimensional	deep	learning	for	system	model	and	
parameters	



Grid	Forecas'ng	
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•  Clustering	Method	
–  Clustering	buses	according	to	the	electric	distance	
–  Linear	approxima/on	of	voltage	magnitudes	

–  Similarity	metric	

–  Distance	



Grid	Forecas'ng	

•  Mul/-Kernel	Learning	
–  Vector-valued	func/on	

–  Regularized	leas-squares	problem	

–  Solu/on	
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Conclusion	
•  Integrated	Resource	and	Load	Forecaster	(IRLF)	

provide	es/mates	on	DER	opera/on	and	customer	loads	for	both	
current	states	and	forecasts		

•  Grid	Es'mator	and	Forecaster	(GEF)	
With	the	informa/on	produced	by	the	IRLF	and	using	the	grid	
measurement	data,	the	GEF	will	employ	machine	learning	
techniques	to	determine	the	interrela/onship	of	state	variables	
and	will	(1)	es/mate	the	current	system	states	and	(2)	forecast	
the	near-future	system	states			
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Thank	you!	

Q	&	A	

NREL	is	a	na/onal	laboratory	of	the	U.S.	Department	of	Energy,	Office	of	Energy	Efficiency	and	Renewable	Energy,	operated	by	the	Alliance	for	Sustainable	Energy,	LLC.	


