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Power Failures in US from Severe Weather 

• > 10 major hurricanes,  snow/ice storms in U.S. 2005-2012

• Each caused more than 500,000 customers without power for days

• Example: Failures during Superstorm Sandy 2012 at the northeast, 

e.g., New York, Massachusetts, … 



Our Objective 

• Resilience*: “Reduce failures, expedite recovery” 

• To identify vulnerability through data analytics?

– Infrastructural vulnerability: Failures

– Service vulnerability: Recovery 

*White House report13, Bloomberg report13



A bit of background

4



Severe Weather Disruptions to Power Grid

• 90% damages from power distribution [White House 13]
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• Lack of models for spatiotemporally dependent
failures, recoveries, and impacts on customers

– Most prior works are on static models, e.g., Liu et al. 15, 
Nateghi and Guikema 11 

– Dynamic models are considered for failures only, e.g., 
Rudin et al. 12;  aggregated recovery by Bertsimas and 
Mourtzinou 95. 

• Real data need to be detailed and at a large scale 

– A few prior works use real data from one service regions, 
e.g., Liu et al. 15, Nateghi and Guikema 11, Rudin et al. 12

– Aggregated failure data are used at a large scale across US 
by Larsen et al. 15

Challenges
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Model guided data analytics
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Non-stationary Spatiotemporal Random Processes

 Randomness: 

 Failures/recoveries by weather

 Non-stationarity: 

 Probability distributions vary spatially and temporally 

 Physics: Radial topology and related protection

Model: Link a large number of dependent variables on 
failures, recoveries and impacts



Coupled Disruption-Recovery-Cost Processes*

 Disruption Process: { I[Ai
d(t)] }

 Ai
d(t): Failed component or activated protective device i

 Recovery Process { I[Di (v)>t-v] }

 Di (v): Duration for disruption occurred at v prolonged to t

 Cost Process { Ci (v,t) I[Di (v)>t-v] }

– Ci (v,t): cost from delayed recovery 

– Example cost: Customer interruption time

*C. Ji, Y. Wei, …R. Wilcox, “Large scale data analytics for resilience of power grid 
across multiple US service regions,” Nature Energy, May 2016
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First-Order Model Parameters

• Disruption rate: Increment of expected cost/time 

• Conditional probability distribution of delayed 
recovery given failures

• Expected cost as the customer outage time



Data and Analysis
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Detailed Data from Multiple Service Regions

• Hurricane Sandy 2012   

– Upstate NY: ~50,000 
square miles, 4 service 
territories 

• From electric grid

– ~6600 failures in 2 days

– Affected ~650,000 
customers to 10 days

• Also data from daily 

operations in 2012

• Details: Failure/min, 
duration, locations, 
costs (downtime) …

on activated protective   
devices
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80-20 Scaling: 20% failures for 84% affected customers 



Generalized Scaling Property 

The scaling property holds for all four DSOs during Sandy

DSO: Distribution System Operator



Similar Scaling Property for Daily Operations 

DSO 1



Hurricane Exacerbated Vulnerability

Probability Daily Operation Hurricane

A disruption/minute 0.0074 0.2301 (~30 times)

A top-20% disruption/minute 0.0004
0.0716 (~170 

times)



A Cause of Vulnerability? 

Structure distribution system: Primary, secondary, customer property

Locations of top failures: >83% at the primary distribution 



Infrastructure Vulnerability

• Local failures can affect tens~hundreds customers

• Exist in daily operations but exacerbated by Super 

storm Sandy

• A cause: How customers are supported by overhead 

power distribution 



Customer Downtime: Different from Failures

CMI: Customer Interruption Time



• Small failures matter: 

A larger number (89%) of small failures (bottom 34% of 

customers or commonplace devices) amounts to 56% of 

customer downtime 

• Prioritizing recovery of large failures under available 

resources does not solve the problem

Service Vulnerability?



Summary

• Infrastructural vulnerability 
– A local failure can have non-local impact to customers

– Exists in daily operations 

– Exacerbated by Super Storm Sandy

– A cause is the structure of power distribution

• Service vulnerability: Aggregation of a large number of 
small failures amounts to major portion of customer 
downtime

• Model-guided data analytics shows promise for identifying 
non-resilience of power distribution and services



How to Scale?

• Data?

• Collaboration? 
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Incorporating Physical Properties

• Dynamic Disruption Process
– Disruption at node i: Ai

d(t), d={f, o};

Damaged/activated component/protective devices 

Outages induced by failures

– Failure neighborhood: Vi
(f)(t)

– Disruption Process Ni
d(t)=I[Ai

d(t)]

• Dynamic Recovery Process
– Recovery event: Bi

(r)(t),

– Recovery neighborhood: Vi
(r)(t)

– Recovery Process: Ni
r(t)=I[Bi

r(t)]

Dynamic Neighborhood (Wei et.al.13)



Recoveries

• Expected cost at time t given location z:

– : failures occurred at time v

– Cost by the failures

– Aggregation over trajectories of failures 

– S(v): set of operational nodes at time v

E C(t, z){ } = ES(v) li
f v | S(v)( )E Gi(v, t) | S(v){ }{ }dv
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Similar Scaling Property for Daily Operations 


