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Outline
• Spatio-Temporal	Correlation	of	Synchrophasor	
Data

• Dimensionality	Reduction	for
– Anomaly	Detection
– Data	Quality	Monitoring

• Online	Identification	using	Real-time	Dynamic	
Data
– Selective	Modal	Analysis
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Growth	of	Synchrophasors (Real-time	Big	Data)

Reported	by	NASPI*

• By	March	2012,	500	
networked	PMUs	installed.

• >1700	PMUs	installed	by	
2015.

*NASPI:	North	American	SynchroPhasor Initiative.

North	America

• More	than	2000	PMU
[Beijing	Sifang,	2013].

China

• http://www.eia.gov/todayinenergy/detail.cfm?id=5630
• Beijing Sifang Company, “Power grid dynamic monitoring and disturbance identification,” in North

American SynchroPhasor Initiative WorkGroupMeeting, Feb. 2013, 2013.

PMU	map	in	North	America	as	of	Oct.	2014.
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Barriers	for	Real-time	Application

Large	sets	of	PMU	data

Efficient	
real-time	
analysis

Data	
Quality	Data

storage

Dimensionality	Reduction
RelatedWork:
[5] M. Wang, J.H. Chow, P. Gao, X.T. Jiang, Y. Xia, S.G. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, M. Razanousky, "A Low-Rank Matrix Approach

for the Analysis of Large Amounts of Power System Synchrophasor Data," in System Sciences (HICSS), 2015.
[6] N. Dahal, R. King, and V. Madani, IEEE, “Online dimension reduction of synchrophasor data,” in Proc. IEEE PES Transmission and Distribution Conf. Expo.

(T&D), 2012.



Spatio-temporal	Correlations
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Cumulative	variance	for	bus	frequency	and	
voltage	magnitude	for	ERCOT	data.
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(a) Cumulative Variance for Bus Frequency in Texas Data
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(b) Cumulative Variance for Voltage Magnitude in Texas Data

PCA	for	ERCOT	Data
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Scatter	Plot	for	Frequency	Data
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2D	Scatter	plot	for	bus	frequency. 3D	Scatter	plot	for	bus	frequency.
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Observations
• High	dimensional	PMU	raw	measurement data	lie	
in	an	much	lower	subspace	(even	with	linear	PCA)

• Scattered	plots	suggest	that	
Change	of	subspace	->	Occurrence	of	anomaly!

• But,	what	is	the	way	to	implement	it?	
• Is	there	any	theoretical justification?	

Data-driven	subspace	change	ó Indication	of	physical	
events	or	quality	anomaly in	wide-area	power	systems
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Novel	Early	Event	Detection	(NEED)
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Corporate PDC Data
Storage

Synchrophasor Data
Dimensionality Reduction

Data
Storage

Early Event Detection

: Phasor measurement unit
PDC: Phasor data concentrator

: Raw measured PMU data
: Preprocessed PMU data

Local PDC Local PDCLocal PDC

Pilot PMUs

L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality reduction of synchrophasor data for 
early anomaly detection: linearized analysis,” IEEE Tran. Power Systems, 2014.



• 23-bus	system
• 23	PMUs.
• Measurements	from	

PMUs: ω,	V.

Case	Study	1
10

Siemens, “PSS/E 30.2 program 
operational manual,” 2009.



Oscillation	Event
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Time	 Sampling Points Event

0-100s 1-3000 Normal	Condition	

100.03-150s 3001-45000 Bus	Disconnection	(206)

150.03-250s 4501-7500 Voltage	set	point	
changes	(211)
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Early	Event	Detection
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Current Practice Critical Needs

There is an urgent need to 
develop scalable, real-time 
methods to monitor and 
improve synchrophasor data 
quality.

Conventional bad data 
detection algorithms are 
rendered ineffective, novel 
algorithms are needed.

u Utilities and vendors are 
developing more and more 
synchrophasor-based 
decision making tools.

u Synchrophasor data has 
much higher sampling rate 
and accuracy requirement 
compared with traditional 
SCADA data.

u Typical bad data ratio of 
synchrophasors in 
California ISO ranges from 
10% to 17% (in 2011) [6].

Need	for	Online	Data	Quality	Monitoring

p M. Wu and L. Xie, “Online identification of bad synchrophasor measurements via spatio-temporal correlations,” 19th 
Power Systems Computation Conference, Genoa, Italy, 2016.



Physical	Events	or	Bad	Data?	
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Phase Angle Measured by A Western System PMU for A Recent Brake Test Event
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Good	Data	vs	Eventful	Data	vs	Bad	Data
Event Bad	DataBad	Data Bad	DataBad	Data

Weak
Spatial

Correlation

Weak
Spatial

Correlation

Weak
Spatial

Correlation

Weak
Spatial

Correlation

Strong
Spatial

Correlation



Features	of	Good	/	Eventful	/	Bad	Data
Criteria:	Normal	Data	
VS	Bad	/	Eventful	Data

u For	a	particular	PMU	curve,	
its	bad	data	segment	and	
eventful	data	segment	have	
weak	temporal correlation	
with	its	normal	data	segment.

Criteria:	Bad	Data	
VS Eventful	Data

u For	a	particular	PMU	curve,	its	bad	data	segment	
has	weak	spatial correlation with	corresponding	
data	segments	of	its	neighboring	PMU	curves.

u Its	eventful	data	segment	has	strong	spatial
correlation	with	corresponding	data	segments	of	
its	neighboring	PMU	curves.

PMU Bad Data: 
Spatio-Temporal 

Outlier
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Voltage	Phase	Angle	after	Data	Correction
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p Spikes fixed using a smoothing filter
p Corrected angle - excellent signal for analysis.
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Dynamic	Data	for	Dynamic	Systems

• Can	we	use	PMU	data	to	develop	simple	
models	describing	key	system	characteristics	
in	real	time?

• Could	we	develop	frequency-targeted	system	
identification	to	recover	key	system	modes?
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B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, “PMU-based Reduced-order Modeling of Power System 
Dynamics via Selective Modal Analysis,” IEEE T&D 2016.



Data-driven	Selective	Modal	Analysis
19

B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, “PMU-based Reduced-order Modeling of Power System 
Dynamics via Selective Modal Analysis,” IEEE T&D 2016.



Summary

• Spatio-temporal	correlations	among	synchrophasor	
data	offer	unique	opportunities	to	develop	real-time,	
scalable	algorithms	for
– Anomaly	detection
– Data	quality	monitoring
– System	identification	

• Much	more	needs	to	be	done!	
– Gridmodel	validation	(in	addition	to	components)
– Cyber	attack	awareness	and	countermeasures.
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