

Dimensionality Reduction and Possible Applications with Synchrophasor Data

Le Xie, Associate Professor Texas A&M University

Joint Work with Y. Chen, M. Wu, B. Wiseman, and Prof. P. R. Kumar

Le.xie@tamu.edu

Outline

- Spatio-Temporal Correlation of Synchrophasor Data
- Dimensionality Reduction for
 - Anomaly Detection
 - Data Quality Monitoring
- Online Identification using Real-time Dynamic Data
 - Selective Modal Analysis

Growth of Synchrophasors (Real-time Big Data)

North America

Reported by NASPI^{*}

- By March 2012, 500 networked PMUs installed.
- >1700 PMUs installed by 2015.

China

 More than 2000 PMU [Beijing Sifang, 2013].

PMU map in North America as of Oct. 2014.

*NASPI: North American SynchroPhasor Initiative.

- Power & Energy Society*
- http://www.eia.gov/todayinenergy/detail.cfm?id=5630
- Beijing Sifang Company, "Power grid dynamic monitoring and disturbance identification," in North American SynchroPhasor Initiative WorkGroup Meeting, Feb. 2013, 2013.

Barriers for Real-time Application

Related Work:

[5] M. Wang, J.H. Chow, P. Gao, X.T. Jiang, Y. Xia, S.G. Ghiocel, B. Fardanesh, G. Stefopolous, Y. Kokai, N. Saito, M. Razanousky, "A Low-Rank Matrix Approach for the Analysis of Large Amounts of Power System Synchrophasor Data," in System Sciences (HICSS), 2015.

[6] N. Dahal, R. King, and V. Madani, IEEE, "Online dimension reduction of synchrophasor data," in Proc. IEEE PES Transmission and Distribution Conf. Expo. (T&D), 2012.

Spatio-temporal Correlations

IEEE

PCA for ERCOT Data

Cumulative variance for bus frequency and voltage magnitude for ERCOT data.

Scatter Plot for Frequency Data

Observations

- High dimensional PMU *raw measurement* data lie in an *much lower* subspace (even with linear PCA)
- Scattered plots suggest that
 Change of subspace -> Occurrence of anomaly!
- But, what is the way to implement it?
- Is there any *theoretical* justification?
 Data-driven subspace change ⇔ Indication of *physical events or quality anomaly* in wide-area power systems

Novel Early Event Detection (NEED)

L. Xie, Y. Chen, and P. R. Kumar, "Dimensionality reduction of synchrophasor data for early anomaly detection: linearized analysis," *IEEE Tran. Power Systems*, 2014.

Case Study 1

- 23-bus system
- 23 PMUs.
- Measurements from
 PMUs: ω, V.

Siemens, "PSS/E 30.2 program operational manual," 2009.

Oscillation Event

Time	Sampling Points	Event
0-100s	1-3000	Normal Condition
100.03-150s	3001-45000	Bus Disconnection (206)
150.03-250s	4501-7500	Voltage set point changes (211)

Early Event Detection

Need for Online Data Quality Monitoring

Current Practice

 Utilities and vendors are developing more and more synchrophasor-based decision making tools.

- Synchrophasor data has much higher sampling rate and accuracy requirement compared with traditional SCADA data.
- Typical bad data ratio of synchrophasors in California ISO ranges from 10% to 17% (in 2011) [6].

Critical Needs

- There is an urgent need to develop scalable, real-time methods to monitor and improve synchrophasor data quality.
- Conventional bad data detection algorithms are rendered ineffective, novel algorithms are needed.

M. Wu and L. Xie, "Online identification of bad synchrophasor measurements via spatio-temporal correlations," *19th Power Systems Computation Conference*, Genoa, Italy, 2016.

Physical Events or Bad Data?

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event

Good Data vs Eventful Data vs Bad Data

Features of Good / Eventful / Bad Data

Criteria: Normal Data VS Bad / Eventful Data

For a particular PMU curve, its bad data segment and eventful data segment have weak temporal correlation with its normal data segment.

Criteria: Bad Data VS Eventful Data

- For a particular PMU curve, its bad data segment has weak spatial correlation with corresponding data segments of its neighboring PMU curves.
- Its eventful data segment has strong spatial correlation with corresponding data segments of its neighboring PMU curves.

Voltage Phase Angle after Data Correction

Dynamic Data for Dynamic Systems

- Can we use PMU data to develop simple models describing key system characteristics in real time?
- Could we develop frequency-targeted system identification to recover key system modes?

B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, "PMU-based Reduced-order Modeling of Power System Dynamics via Selective Modal Analysis," *IEEE T&D 2016.*

Data-driven Selective Modal Analysis

TABLE II
RESULTS OF TARGETED MODE SELECTION

Selected Eigenvalues	Damping Ratio	Frequency (Hz)
$\lambda_{1,2} = -0.0917 \pm j7.6626$	0.012	1.22
$\lambda_{3,4} = -0.3607 \pm j5.1037$	0.071	0.81
$\lambda_{5,6} = -0.1399 \pm j2.0713$	0.067	0.33

 TABLE III

 Relevant States Identification through Participation Factors

Eigenvalues	Relevant States	Individual NPF	Total NPF
$\lambda_{1,2}$	δ_1, ω_1	2×0.4922	0.9844
$\lambda_{3,4}$	$\delta_3,\omega_3\ \delta_4,\omega_4$	2×0.2456 2×0.2088	0.9088
$\lambda_{5,6}$	$\delta_4,\omega_4\ \delta_3,\omega_3$	$2 \times 0.1287 \\ 2 \times 0.1562$	0.6298

TABLE IV	
ESTIMATION OF SELECTED EIGENVALUES	WITH SMA

Iteration	$\lambda_{1,2}$	$\lambda_{3,4}$	$\lambda_{5,6}$
0	$-0.063 \pm j7.636$	$-0.006 \pm j5.223$	$-0.006 \pm j1.762$
1	$-0.094 \pm j7.665$	$-0.338 \pm j5.068$	$-0.337 \pm j2.183$
2	$-0.092 \pm j7.662$	$-0.364 \pm j5.100$	$-0.055 \pm j2.040$
3	$-0.092 \pm j7.663$	$-0.361 \pm j5.104$	$-0.184 \pm j2.062$
4	$-0.092 \pm j7.663$	$-0.361 \pm j5.104$	$-0.123 \pm j2.082$
5	$-0.092 \pm j7.663$	$-0.361 \pm j5.104$	$-0.145 \pm j2.063$
6	$-0.092 \pm j7.663$	$-0.361 \pm j5.104$	$-0.139 \pm j2.076$
7	$-0.092 \pm j7.663$	$-0.361 \pm j5.104$	-0.1394 \pm j2.069
True Value	$-0.0917 \pm j7.6626$	$-0.3607 \pm j5.1037$	$-0.1399 \pm j2.0713$

 TABLE VI

 Comparison of Eigenvalues from Identified Model

	*	· #
Eigenvalues	2^{nd} -order Model	28 th -order Model
$\lambda_{1,2}$	$-0.0920 \pm j7.6344$	-0.0917± j7.6626

Fig. 3. Bode plot comparison of the identified and original models.

B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, "PMU-based Reduced-order Modeling of Power System Dynamics via Selective Modal Analysis," *IEEE T&D 2016.*

Summary

- Spatio-temporal correlations among synchrophasor data offer unique opportunities to develop real-time, scalable algorithms for
 - Anomaly detection
 - Data quality monitoring
 - System identification
- Much more needs to be done!
 - Grid model validation (in addition to components)
 - Cyber attack awareness and countermeasures.

Key References

- [1] K. Martin, "Synchrophasor data diagnostics: detection & resolution of data problems for operations and analysis", in *Electric Power Group Webinar Series*, Jan 2014.
- □ [2] S. Ghiocel, J. Chow, et al. "Phasor-measurement-based state estimation for synchrophasor data quality improvement and power transfer interface monitoring," *IEEE Tran. Power Systems*, 2014.
- □ [3] K. D. Jones, A. Pal, and J. S. Thorp, "Methodology for performing synchrophasor data conditioning and validation," *IEEE Tran. Power Systems*, May 2015.
- [4] J. Lim; C. L. DeMarco, "Model-free voltage stability assessments via singular value analysis of PMU data," in Bulk Power System Dynamics and Control IX Optimization, Security and Control of the Emerging Power Grid (IREP), 2013.
- [5] Anurag Srivastava, "Meeting PMU data quality requirements for mission critical applications", in PSERC Public Webinar Series, Nov 2015.
- **[6]** California ISO, "Five year synchrophasor plan," California ISO, Tech. Rep., Nov 2011.
- □ [7] L. Xie, Y. Chen, and P. R. Kumar, "Dimensionality reduction of synchrophasor data for early anomaly detection: linearized analysis," *IEEE Tran. Power Systems*, 2014.
- [8] M. Wu and L. Xie, "Online identification of bad synchrophasor measurements via spatio-temporal correlations," *19th Power Systems Computation Conference*, Genoa, Italy, 2016.
- □ [9] Q. Zhang, and V. Venkatasubramanian. "Synchrophasor time skew: formulation, detection and correction," *North American Power Symposium (NAPS)*, 2014.
- □ [10] B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, "PMU-based Reduced-order Modeling of Power System Dynamics via Selective Modal Analysis," *IEEE T&D 2016.*

